Développement : Équation de Sylvester.

RM

2022-2023

Référence:

1. Oral à l'agreg

Énoncé:

Théorème 1: Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ deux matrices dont les valeurs propres sont de partie réelle strictement négative. Alors pour tout $C \in \mathcal{M}_n(\mathbb{C})$, l'équation AX + XB = C admet une unique solution X dans $\mathcal{M}_n(\mathbb{C})$.

On rappelle avant quelques notions:

Théorème (Cauchy-Lipschitz linéaire) 2: Soient d un entier et I un intervalle réel. Soient A une fonction continue sur I à valeurs dans $\mathcal{M}_d(\mathbb{C})$, et B une fonction continue sur I à valeurs dans \mathbb{C}^d . Pour tout $x_0 \in I$ et $Y_0 \in \mathbb{C}^d$, il existe alors une unique solution $Y: I \mapsto \mathbb{C}^d$ à l'équation différentielle linéaire Y' = AY + B telle que $Y(x_0) = Y_0$.

Théorème (Dunford) 3 : Soit $A \in \mathcal{M}_n(\mathbb{C})$. Il existe $D \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable et une matrice $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente telles que A = D + N et D et N commutent. De plus, D et N sont des polynômes en A sont uniques.

Résolution:

Lemme 4: Soit $\|.\|$ une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$, et soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice dont les valeurs propres sont de partie réelle strictement négative. Alors il existe $\alpha > 0$ et $\lambda > 0$ tels que, pour tout t positif ou nul, on ait $\|e^{tA}\| \leq \lambda e^{-\alpha t}$.

Démonstration: D'après le théorème de Dunford, il existe $D, N \in \mathcal{M}_n(\mathbb{C})$ telles que A = D + N, avec D diagonalisable, N nilpotent et DN = ND. Comme D et N commutent, alors on a $e^{tA} = e^{tD}e^{tN}$, et D et N sont cotrigonalisable :

En effet, c'est un théorème, si deux matrices A et B commutent et son trigonalisable dans $\mathcal{M}_n(\mathbb{K})$, alors elles sont cotrigonalisable.

il existe donc $P \in GL_n(\mathbb{C})$ tel que $D = PTP^{-1}$, où T est une matrice triangulaire supérieure avec $\lambda_1, ..., \lambda_n$ sur la diagonale, et $P^{-1}NP$ est triangulaire supérieure avec des zéros sur la diagonale car N est nilpotente. Ainsi $P^{-1}AP = P^{-1}DP + P^{-1}NP$ est une matrice triangulaire supérieur avec $\lambda_1, ..., \lambda_n$ sur la diagonale, qui sont donc les valeurs propres de A.

Comme D est diagonalisable, on note Q sa matrice de passage tel que $D = QD_{diag}Q^{-1}$, ou la matrice D_{diag} est une matrice diagonale avec $\lambda_1, ..., \lambda_n$ sur la diagonale.

Par hypothèse, il existe c > 0 tel que $Re(\lambda_i) \le -c$ pour tout i. En notant |||.||| la norme subordonnée à $||.||_{\infty}$ sur \mathbb{C}^n , on a pour tout $t \ge 0$:

$$|||Q^{-1}e^{tD}Q||| = |||\operatorname{diag}(e^{t\lambda_1}, ..., e^{t\lambda_n})||| \le \sup_{i \in [1; n]} e^{tRe(\lambda_i)} \le e^{-ct}$$

La norme subordonné de la norme infinie est le sup de la somme des lignes au module, donc comme elle est diagonale, la somme des lignes au module donne $|e^{t\lambda_i}|$ pour chaque ligne, et comme $|e^{t\lambda_i}| = e^{tRe(\lambda_i)}$, on en déduit l'inégalité.

L'espace $\mathcal{M}_n(\mathbb{C})$ étant de dimension finie, les normes sont équivalentes et donc on a également $||P^{-1}e^{tD}P|| = O(e^{-ct})$. D'autres part, si on note n l'ordre de nilpotence de N, on a e^{tN} $\sum_{k=0}^{n-1} t^k N^k / k! = o(t^n)$. Ainsi, comme $||e^{tA}|| = ||e^{tN}e^{tD}||$, on a donc $||e^{tA}|| = o(t^n e^{-ct}) = O\left(e^{\frac{-ct}{2}}\right)$, et donc il existe $\lambda > 0$ tel que $||e^{tA}|| \leq \lambda e^{\frac{-ct}{2}}$ et on pose $\alpha = c/2$ pour avoir le résultat.

Comme l'application $S: X \mapsto AX + XB$ est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$, $D\'{e}monstration:$ qui est un espace vectoriel de dimension finie, il suffit de montrer qu'elle est surjective pour obtenir l'injectivité et donc l'unicité de la solution.

Pour $C \in \mathcal{M}_n(\mathbb{C})$, on considère le problème de Cauchy suivant, qui est une équation différentielle d'inconnue $Y: \mathbb{R} \mapsto \mathcal{M}_n(\mathbb{C})$,

$$\begin{cases} Y' = AY + YB \\ Y(0) = C \end{cases} \tag{4}$$

Comme on a l'isomorphisme $\mathcal{M}_n(\mathbb{C}) \cong \mathcal{M}_{n^2,1}(\mathbb{C})$, on associe à une matrice $M \in \mathcal{M}_n(\mathbb{C})$ sa "vectorisation" $vec(M) \in \mathcal{M}_{n^2,1}(\mathbb{C})$, ce qui nous permet de réécrire l'équation (4) sous la forme d'une équation différentielle linéaire à coefficients constants

$$\begin{cases} vec(Y)' = \Gamma vec(Y) \\ vec(Y)(0) = vec(C). \end{cases}$$
 (5)

pour une unique matrice $\Gamma \in \mathcal{M}_{n^2,1}(\mathbb{C})$, de sorte que Y soit solution de (4) si et seulement si vec(Y)est solution de (5). D'après le Théorème 1, il existe une unique solution à l'équation (5), et donc une unique solution $Y: \mathbb{R} \to \mathcal{M}_n(\mathbb{C})$ de (4). On vérifie que la solution est définie sur tout \mathbb{R} par $Y(t) = \exp(tA)C\exp(tB)$. En effet, pour tout $t \in \mathbb{R}$, on a

$$Y'(t) = A \exp(tA)C \exp(tB) + \exp(tA)CB \exp(tB) = AY + YB.$$

car toute matrice M commute avec son exponentielle puisqu'on a $exp(M) \in \mathbb{C}[M]$, et donc M

commute aussi avec $\exp(tM)$ pour tout $t \in \mathbb{R}$. On va maintenant montrer que $X = -\int_0^{+\infty} Y(s)ds$ est une solution de l'équation de Sylvester. En effet, pour $t \ge 0$, on intègre Y' entre 0 et t pour obtenir

$$Y(t) - C = \int_0^t Y'(s)ds = A. \int_0^t Y(s)ds + \int_0^t Y(s)ds.B$$

Il ne reste donc plus qu'à montrer que $\lim_{t\to +\infty}Y(t)=0$ et que Y est intégrable pour conclure. Pour ce faire, on considère une norme d'algèbre $\|.\|$ sur $\mathcal{M}_n(\mathbb{C})$. D'après le Lemme 4, il existe $\alpha_1, \lambda_1, \alpha_2, \lambda_2$ des nombres strictement positifs tels que $||e^{tA}|| \le \lambda_1 e^{-\alpha_1 t}$ et $||e^{tB}|| \le \lambda_2 e^{-\alpha_2 t}$ pour tout $t \ge 0$. Ainsi, en posant $\lambda = \max(\lambda_1, \lambda_2)$ et $\alpha = \min(\alpha_1, \alpha_2)$, comme ||.|| est une norme d'algèbre, on a

$$||Y(t)|| = ||e^{tA}Ce^{tB}|| \le ||C||\lambda^2 e^{-2\alpha t}.$$

En particulier, on a bien $\lim_{t\to +\infty} \|Y(t)\| = 0$ et donc $\lim_{t\to +\infty} Y(t) = 0$. De plus, comme $t\mapsto e^{-2\alpha t}$ est intégrable et domine ||Y(t)||, alors Y est intégrable. Finalement, en faisant tendre $t \mapsto +\infty$, on obtient

$$-C = A. \int_0^{+\infty} Y(s)ds + \int_0^{+\infty} Y(s)ds.B$$

Ce qui prouve que X est bien une solution de l'équation de Sylvester.